

Output Concepts

2

Start with some basics: display
devices

 Just how do we get images onto a screen?
 Most prevalent device: CRT

 Cathode Ray Tube
 AKA TV tube

3

Cathode Ray Tubes
 Cutting edge 1930’s technology

 (basic device actually 100 yrs old)
 Vacuum tube (big, power hog, …)
 Refined some, but no fundamental changes

 But still dominant
 Because TVs are consumer item
 LCD’s just starting to challenge

4

How a CRT works (B/W)

Vacuum Tube

Negative charge Positive charge
15-20 Kv

Phosphor
Coating

Electron Gun

Deflection
Coils

5

Move electron beam in fixed
scanning pattern

 “Raster” lines across screen

 Modulate intensity along line
(in spots) to get pixels

6

Pixels determined by 2D array of
intensity values in memory

 “Frame buffer”
 Each memory cell controls 1 pixel

 All drawing by placing values in memory

42

DAC

7

Adding color

 Use 3 electron guns
 For each pixel place 3 spots of

phosphor (glowing R, G, & B)
 Arrange for red gun to

hit red spot, etc.
 Requires a lot more precision than simple B/W
 Use “shadow mask” behind phosphor spots to

help

8

Color frame buffer

 Frame buffer now has 3 values for each pixel
 each value drives one electron gun
 can only see ~ 2^8 gradations of intensity for each of R,G,&B
 1 byte ea => 24 bits/pixel => full color

9

Other display technologies: LCD

 Liquid Crystal Display
 Discovered in 1888 (!) by Reinitzer
 Uses material with unusual physical properties: liquid crystal

 rest state: rotates polarized light 90°
 voltage applied: passes as is

10

Layered display

 Layers

 In rest state: light gets through
 Horizontally polarized, LC flips 90°, becomes vertically

polarized
 Passes through

Horizontal Polarizer
Liquid Crystal

Vertical Polarizer

11

Layered display

 Layers

 In powered state: light stopped
 Horizontally polarized, LC does nothing, stopped by vertical

filter

Horizontal Polarizer
Liquid Crystal

Vertical Polarizer

12

Lots of other interesting/cool
technologies

 Direct retinal displays
 University of Washington HIT lab

 Set of 3 color lasers scan image directly onto retinal surface
 Scary but it works
 Very high contrast, all in focus
 Potential for very very high resolution
 Has to be head mounted

13

All these systems use a frame
buffer

 Again, each pixel has 3 values
 Red, Green Blue

 Why R, G, B?
 R, G, and B are particular freq of light
 Actual light is a mix of lots of frequencies
 Why is just these 3 enough?

14

Why R, G, & B are enough

 Eye has receptors (cones) that are sensitive to (one of)
these
 Eye naturally quantizes/samples frequency distribution

 8-bit of each does a pretty good job, but… some
complications

15

Complications

 Eye’s perception is not linear (logarithmic)
 CRT’s (etc.) do not respond linearly
 Different displays have different responses

 different dynamic ranges
 different color between devices!

 Need to compensate for all of this

16

Gamma correction

 Response of all parts understood (or just measured)
 Correct: uniform perceived color

 Normally table driven
 0…255 in (linear intensity scale)
 0…N out to drive guns

 N=1024 or 2048 typical

17

Unfortunately, gamma correction
not always done

 E.g., TV is not gamma corrected

 Knowing RGB values does not tell you what color you will
get!

 For systems you control: do gamma correction

18

24 bits/pixel => “true color,” but
what if we have less?

 16 bits/pixel
 5 each in RGB with 1 left over
 decent range (32 gradations each)

 Unfortunately often only get 8
 3 bits for GB, 2 for R
 not enough
 Use a “trick” instead

19

Color lookup tables (CLUTs)

R G B
0:

R G B
1:

17 236 129
2:

R G B
255:

...
2

 Extra piece of hardware
 Use value in FB as index into CLUT

 e.g. 8 bit pixel => entries 0…255

 Each entry in CLUT has full RBG value used to drive 3 guns

20

Palettes

 8 bits / pixel with CLUT
 Gives “palette” of 256 different colors
 Chosen from 16M
 Can do a lot better than uniform by picking a good palette for

the image to be displayed (nice algorithms for doing this)

21

Software models of output
(Imaging models)

 Start out by abstracting the HW
 Earliest imaging models abstracted early hardware: vector

refresh
 stroke or vector (line only) models

22

Vector models

 Advantages
 can freely apply mathematical xforms

 Scale rotate, translate
 Only have to manipulate endpoints

 Disadvantages
 limited / low fidelity images

 wireframe, no solids, no shading

23

Current dominant: Raster models

 Most systems provide model pretty close to raster display
HW
 integer coordinate system
 0,0 typically at top-left with Y down
 all drawing primitives done by filling in pixel color values

(values in FB)

24

Issue: Dynamics

 Suppose we want to “rubber-band” a line
over complex
background

 Drawing line is relatively easy
 But how do we “undraw” it?

25

Undrawing things in raster model
 Ideas?

(red, su, xo, pal, fwd)

26

Undrawing things in raster
models	

 Four solutions:
 1) Redraw method

 Redraw all the stuff under
 Then redraw the line

 Relatively expensive (but HW is fast)
 Note: don’t have to redraw all, just “damaged” area

 Simplest and most robust (back)

27

How to undraw

 2) “Save-unders”
 When you draw the line, remember what pixel values were

“under” it
 To undraw, put back old values
 Issue: (what is it?)

28

How to undraw
 2) “Save-unders”

 When you draw the line, remember what pixel values were “under” it
 To undraw, put back old values
 Issue: what if “background” changes

 Tends to either be complex or not robust (back)
 Typically used only in special cases

29

How to undraw

 3) Use bit manipulation of colors
 Colors stored as bits
 Instead of replacing bits XOR with what is already there

 A ^ B ^ B == ?

30

How to undraw

 3) Use bit manipulation of colors
 Colors stored as bits
 Instead of replacing bits XOR with what is already there

 A ^ B ^ B == A (for any A and B)
 Draw line by XOR with some color
 Undraw line by XOR with same color

31

Issue with XOR?

 What is it?

32

Issue with XOR

 Colors unpredictable
 SomeColor ^ Blue == ??

 Don’t know what color you will get
 Not assured of good contrast

 Ways to pick 2nd color to maximize contrast, but still get “wild”
colors

33

Undraw with XOR

 Advantage of XOR undraw
 Fast
 Don’t have to worry about what is “under” the drawing, just

draw
 In the past used a lot where dynamics needed

 May not be justified on current HW (back)

34

How to undraw

 4) Simulate independent bit-planes using CLUT “tricks”
 Won’t consider details, but can use tricks with CLUT to

simulate set of transparent layers
 Probably don’t want to use this solution, but sometimes used

for special cases like cursors (back)

35

Higher level imaging models

 Simple pixel/raster model is somewhat impoverished
 Integer coordinate system
 No rotation (or good scaling)
 Not very device independent

36

Higher level imaging models

 Would like:
 Real valued coordinate system

 oriented as Descarte intended?
 Support for full transformations

 real scale and rotate
 Richer primitives

 curves

37

Stencil and paint model

 All drawing modeled as placing paint on a surface through a
“stencil”
 Stencil modeled as closed curves (e.g., splines)

 Issue: how do we draw lines?

38

Stencil and paint model
 All drawing modeled as placing paint on a surface through a

“stencil”
 Modeled as closed curves (splines)

 Issue: how do we draw lines?
 (Conceptually) very thin stencil along direction of line
 Actually special case & use line alg.

39

Stencil and paint model
 Original model used only opaque paint

 Modeled hardcopy devices this was developed for (at Xerox
PARC)

 Current systems now support “paint” that combines with
“paint” already under it
 e.g., translucent paint (“alpha” values)

40

Stencil and paint model(s)

 Postscript model is based on this approach
 Dominant model for hardcopy, but not screen

 New Java drawing model (Java2D) also takes this approach
 Mac OS X

 derived from NeXTstep, which used Display Postscript
 Windows Vista?

41

Stencil and paint model(s)

 Advantages
 Resolution & device independent

 does best job possible on avail HW
 Don’t need to know size of pixels

 Can support full transformations
 rotate & scale

42

Stencil and paint model(s)

 Disadvantages
 Slower

 Less and less of an issue
 But interactive response tends to be dominated by redraw

time
 Much harder to implement

43

Stencil and paint model(s)

 Stencil and paint type models generally the way to go
 But have been slow to catch on

 Market forces tend to keep us with old models
 Much harder to implement

 But starting to see these models for screen based stuff (esp.
w/ Java2D)

44

Object-oriented abstractions for
drawing

 Most modern systems provide uniform access to all
graphical output capabilities / devices
 Treated as abstract drawing surface

 “Canvas” abstraction
 subArctic: drawable
 Macintosh: grafPort
 Windows: device context
 X Windows: GC (GraphicsContext)
 Java: Graphics/Graphics2D classes

45

Object-oriented abstractions for
drawing

 Abstraction provides set of drawing primitives
 Might be drawing on…

 Window, direct to screen, in-memory bitmap, printer, …
 Key point is that you can write code that doesn’t have to

know which one

46

Object-oriented abstractions for
drawing

 Generally don’t want to depend on details of device but
sometimes need some:
 How big is it
 Is it resizable
 Color depth (e.g., B/W vs. full color)
 Pixel resolution (for fine details only)

47

A particular drawing abstraction:
java.awt.Graphics

 Fairly typical raster-oriented model
 More recent version: Graphics2D

48

java.awt.Graphics

 Gives indirect access to drawing surface /
device
 Contains

 Reference to screen
 Drawing “state”

 Current clipping, color,
font, etc.

 Multiple graphics instances may reference the same
drawing surface (but hold different state information)

Graphics

Graphics

49

Fonts and drawing strings

 Font provides description of the shape of a collection of chars
 Shapes are called glyphs

 Plus information e.g. about how to advance after drawing a
glyph

 And aggregate info for the whole collection

 More recent formats (OpenType)
can specify lots more
 E.g., ligatures, alternates

50

Fonts
 Typically specified by:

 A family or typeface
 e.g., courier, helvetica, times roman

 A size (normally in “points”)
 A style

 e.g., plain, italic, bold,
bold & italic

 other possibles (from mac):
underline, outline, shadow

 See java.awt.Font

51

Points

 An odd and archaic unit of measurement
 72.27 points per inch

 Origin: 72 per French inch (!)
 Postscript rounded to 72/inch most have followed
 Early Macintosh: point==pixel (1/75th)

52

FontMetrics

 Objects that allow you to measure characters, strings, and
properties of whole fonts

 java.awt.FontMetrics
 Get it by using:

 Graphics.getFontMetrics()

53

Reference point and baseline

 Each glyph has a reference point
 Draw a character at x,y, reference point will end up at x,y

(not top-left)

 Reference point defines a baseline

p

54

Advance width

 Each glyph has an “advance width”
 Where reference point of next glyph goes along baseline

pa

55

Widths

 Each character also has a bounding box width
 May be different from advance width in some cases
 Don’t get this with AWT FontMetrics, so there “width” means

“advance width”

56

Ascent and decent

 Glyphs are drawn both above and below baseline
 Distance below: “decent” of glyph
 Distance above: “ascent” of glyph

p Ascent
Decent

57

Standard ascent and decent

 Font as a whole has a standard ascent and standard decent

 AWT has separate notion of Max ascent and decent, but
these are usually the same

pM Std Ascent
Std Decent

58

Leading

 Leading = space between lines of text
 Pronounce “led”-ing after the lead strips that used to provide

it
 space between bottom of standard decent and top of

standard ascent
 i.e. interline spacing

59

Height

 Height of character or font
 ascent + decent + leading

 not standard across systems: on some systems doesn’t include
leading (but does in AWT)

60

FontMetrics

 FontMetrics objects give you all of above measurements
 for chars & Strings
 also char and byte arrays
 for whole fonts

 Graphics method will get you FontMetrics for a given font

61

